

Output Concepts

2

Start with some basics: display
devices

 Just how do we get images onto a screen?
 Most prevalent device: CRT

 Cathode Ray Tube
 AKA TV tube

3

Cathode Ray Tubes
 Cutting edge 1930’s technology

 (basic device actually 100 yrs old)
 Vacuum tube (big, power hog, …)
 Refined some, but no fundamental changes

 But still dominant
 Because TVs are consumer item
 LCD’s just starting to challenge

4

How a CRT works (B/W)

Vacuum Tube

Negative charge Positive charge
15-20 Kv

Phosphor
Coating

Electron Gun

Deflection
Coils

5

Move electron beam in fixed
scanning pattern

 “Raster” lines across screen

 Modulate intensity along line
(in spots) to get pixels

6

Pixels determined by 2D array of
intensity values in memory

 “Frame buffer”
 Each memory cell controls 1 pixel

 All drawing by placing values in memory

42

DAC

7

Adding color

 Use 3 electron guns
 For each pixel place 3 spots of

phosphor (glowing R, G, & B)
 Arrange for red gun to

hit red spot, etc.
 Requires a lot more precision than simple B/W
 Use “shadow mask” behind phosphor spots to

help

8

Color frame buffer

 Frame buffer now has 3 values for each pixel
 each value drives one electron gun
 can only see ~ 2^8 gradations of intensity for each of R,G,&B
 1 byte ea => 24 bits/pixel => full color

9

Other display technologies: LCD

 Liquid Crystal Display
 Discovered in 1888 (!) by Reinitzer
 Uses material with unusual physical properties: liquid crystal

 rest state: rotates polarized light 90°
 voltage applied: passes as is

10

Layered display

 Layers

 In rest state: light gets through
 Horizontally polarized, LC flips 90°, becomes vertically

polarized
 Passes through

Horizontal Polarizer
Liquid Crystal

Vertical Polarizer

11

Layered display

 Layers

 In powered state: light stopped
 Horizontally polarized, LC does nothing, stopped by vertical

filter

Horizontal Polarizer
Liquid Crystal

Vertical Polarizer

12

Lots of other interesting/cool
technologies

 Direct retinal displays
 University of Washington HIT lab

 Set of 3 color lasers scan image directly onto retinal surface
 Scary but it works
 Very high contrast, all in focus
 Potential for very very high resolution
 Has to be head mounted

13

All these systems use a frame
buffer

 Again, each pixel has 3 values
 Red, Green Blue

 Why R, G, B?
 R, G, and B are particular freq of light
 Actual light is a mix of lots of frequencies
 Why is just these 3 enough?

14

Why R, G, & B are enough

 Eye has receptors (cones) that are sensitive to (one of)
these
 Eye naturally quantizes/samples frequency distribution

 8-bit of each does a pretty good job, but… some
complications

15

Complications

 Eye’s perception is not linear (logarithmic)
 CRT’s (etc.) do not respond linearly
 Different displays have different responses

 different dynamic ranges
 different color between devices!

 Need to compensate for all of this

16

Gamma correction

 Response of all parts understood (or just measured)
 Correct: uniform perceived color

 Normally table driven
 0…255 in (linear intensity scale)
 0…N out to drive guns

 N=1024 or 2048 typical

17

Unfortunately, gamma correction
not always done

 E.g., TV is not gamma corrected

 Knowing RGB values does not tell you what color you will
get!

 For systems you control: do gamma correction

18

24 bits/pixel => “true color,” but
what if we have less?

 16 bits/pixel
 5 each in RGB with 1 left over
 decent range (32 gradations each)

 Unfortunately often only get 8
 3 bits for GB, 2 for R
 not enough
 Use a “trick” instead

19

Color lookup tables (CLUTs)

R G B
0:

R G B
1:

17 236 129
2:

R G B
255:

...
2

 Extra piece of hardware
 Use value in FB as index into CLUT

 e.g. 8 bit pixel => entries 0…255

 Each entry in CLUT has full RBG value used to drive 3 guns

20

Palettes

 8 bits / pixel with CLUT
 Gives “palette” of 256 different colors
 Chosen from 16M
 Can do a lot better than uniform by picking a good palette for

the image to be displayed (nice algorithms for doing this)

21

Software models of output
(Imaging models)

 Start out by abstracting the HW
 Earliest imaging models abstracted early hardware: vector

refresh
 stroke or vector (line only) models

22

Vector models

 Advantages
 can freely apply mathematical xforms

 Scale rotate, translate
 Only have to manipulate endpoints

 Disadvantages
 limited / low fidelity images

 wireframe, no solids, no shading

23

Current dominant: Raster models

 Most systems provide model pretty close to raster display
HW
 integer coordinate system
 0,0 typically at top-left with Y down
 all drawing primitives done by filling in pixel color values

(values in FB)

24

Issue: Dynamics

 Suppose we want to “rubber-band” a line
over complex
background

 Drawing line is relatively easy
 But how do we “undraw” it?

25

Undrawing things in raster model
 Ideas?

(red, su, xo, pal, fwd)

26

Undrawing things in raster
models	

 Four solutions:
 1) Redraw method

 Redraw all the stuff under
 Then redraw the line

 Relatively expensive (but HW is fast)
 Note: don’t have to redraw all, just “damaged” area

 Simplest and most robust (back)

27

How to undraw

 2) “Save-unders”
 When you draw the line, remember what pixel values were

“under” it
 To undraw, put back old values
 Issue: (what is it?)

28

How to undraw
 2) “Save-unders”

 When you draw the line, remember what pixel values were “under” it
 To undraw, put back old values
 Issue: what if “background” changes

 Tends to either be complex or not robust (back)
 Typically used only in special cases

29

How to undraw

 3) Use bit manipulation of colors
 Colors stored as bits
 Instead of replacing bits XOR with what is already there

 A ^ B ^ B == ?

30

How to undraw

 3) Use bit manipulation of colors
 Colors stored as bits
 Instead of replacing bits XOR with what is already there

 A ^ B ^ B == A (for any A and B)
 Draw line by XOR with some color
 Undraw line by XOR with same color

31

Issue with XOR?

 What is it?

32

Issue with XOR

 Colors unpredictable
 SomeColor ^ Blue == ??

 Don’t know what color you will get
 Not assured of good contrast

 Ways to pick 2nd color to maximize contrast, but still get “wild”
colors

33

Undraw with XOR

 Advantage of XOR undraw
 Fast
 Don’t have to worry about what is “under” the drawing, just

draw
 In the past used a lot where dynamics needed

 May not be justified on current HW (back)

34

How to undraw

 4) Simulate independent bit-planes using CLUT “tricks”
 Won’t consider details, but can use tricks with CLUT to

simulate set of transparent layers
 Probably don’t want to use this solution, but sometimes used

for special cases like cursors (back)

35

Higher level imaging models

 Simple pixel/raster model is somewhat impoverished
 Integer coordinate system
 No rotation (or good scaling)
 Not very device independent

36

Higher level imaging models

 Would like:
 Real valued coordinate system

 oriented as Descarte intended?
 Support for full transformations

 real scale and rotate
 Richer primitives

 curves

37

Stencil and paint model

 All drawing modeled as placing paint on a surface through a
“stencil”
 Stencil modeled as closed curves (e.g., splines)

 Issue: how do we draw lines?

38

Stencil and paint model
 All drawing modeled as placing paint on a surface through a

“stencil”
 Modeled as closed curves (splines)

 Issue: how do we draw lines?
 (Conceptually) very thin stencil along direction of line
 Actually special case & use line alg.

39

Stencil and paint model
 Original model used only opaque paint

 Modeled hardcopy devices this was developed for (at Xerox
PARC)

 Current systems now support “paint” that combines with
“paint” already under it
 e.g., translucent paint (“alpha” values)

40

Stencil and paint model(s)

 Postscript model is based on this approach
 Dominant model for hardcopy, but not screen

 New Java drawing model (Java2D) also takes this approach
 Mac OS X

 derived from NeXTstep, which used Display Postscript
 Windows Vista?

41

Stencil and paint model(s)

 Advantages
 Resolution & device independent

 does best job possible on avail HW
 Don’t need to know size of pixels

 Can support full transformations
 rotate & scale

42

Stencil and paint model(s)

 Disadvantages
 Slower

 Less and less of an issue
 But interactive response tends to be dominated by redraw

time
 Much harder to implement

43

Stencil and paint model(s)

 Stencil and paint type models generally the way to go
 But have been slow to catch on

 Market forces tend to keep us with old models
 Much harder to implement

 But starting to see these models for screen based stuff (esp.
w/ Java2D)

44

Object-oriented abstractions for
drawing

 Most modern systems provide uniform access to all
graphical output capabilities / devices
 Treated as abstract drawing surface

 “Canvas” abstraction
 subArctic: drawable
 Macintosh: grafPort
 Windows: device context
 X Windows: GC (GraphicsContext)
 Java: Graphics/Graphics2D classes

45

Object-oriented abstractions for
drawing

 Abstraction provides set of drawing primitives
 Might be drawing on…

 Window, direct to screen, in-memory bitmap, printer, …
 Key point is that you can write code that doesn’t have to

know which one

46

Object-oriented abstractions for
drawing

 Generally don’t want to depend on details of device but
sometimes need some:
 How big is it
 Is it resizable
 Color depth (e.g., B/W vs. full color)
 Pixel resolution (for fine details only)

47

A particular drawing abstraction:
java.awt.Graphics

 Fairly typical raster-oriented model
 More recent version: Graphics2D

48

java.awt.Graphics

 Gives indirect access to drawing surface /
device
 Contains

 Reference to screen
 Drawing “state”

 Current clipping, color,
font, etc.

 Multiple graphics instances may reference the same
drawing surface (but hold different state information)

Graphics

Graphics

49

Fonts and drawing strings

 Font provides description of the shape of a collection of chars
 Shapes are called glyphs

 Plus information e.g. about how to advance after drawing a
glyph

 And aggregate info for the whole collection

 More recent formats (OpenType)
can specify lots more
 E.g., ligatures, alternates

50

Fonts
 Typically specified by:

 A family or typeface
 e.g., courier, helvetica, times roman

 A size (normally in “points”)
 A style

 e.g., plain, italic, bold,
bold & italic

 other possibles (from mac):
underline, outline, shadow

 See java.awt.Font

51

Points

 An odd and archaic unit of measurement
 72.27 points per inch

 Origin: 72 per French inch (!)
 Postscript rounded to 72/inch most have followed
 Early Macintosh: point==pixel (1/75th)

52

FontMetrics

 Objects that allow you to measure characters, strings, and
properties of whole fonts

 java.awt.FontMetrics
 Get it by using:

 Graphics.getFontMetrics()

53

Reference point and baseline

 Each glyph has a reference point
 Draw a character at x,y, reference point will end up at x,y

(not top-left)

 Reference point defines a baseline

p

54

Advance width

 Each glyph has an “advance width”
 Where reference point of next glyph goes along baseline

pa

55

Widths

 Each character also has a bounding box width
 May be different from advance width in some cases
 Don’t get this with AWT FontMetrics, so there “width” means

“advance width”

56

Ascent and decent

 Glyphs are drawn both above and below baseline
 Distance below: “decent” of glyph
 Distance above: “ascent” of glyph

p Ascent
Decent

57

Standard ascent and decent

 Font as a whole has a standard ascent and standard decent

 AWT has separate notion of Max ascent and decent, but
these are usually the same

pM Std Ascent
Std Decent

58

Leading

 Leading = space between lines of text
 Pronounce “led”-ing after the lead strips that used to provide

it
 space between bottom of standard decent and top of

standard ascent
 i.e. interline spacing

59

Height

 Height of character or font
 ascent + decent + leading

 not standard across systems: on some systems doesn’t include
leading (but does in AWT)

60

FontMetrics

 FontMetrics objects give you all of above measurements
 for chars & Strings
 also char and byte arrays
 for whole fonts

 Graphics method will get you FontMetrics for a given font

61

